Syndicate content

Archive - Dec 15, 2019

Date
  • All
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

LAM’s Liquid Biopsy Test of cfDNA Methylation Panel Enables Highly Sensitive and Specific Detection of the Most Common Liver Cancer (Hepatocellular Carcinoma)

Today we discuss the dissemination of DNA-methylation-based tests for non-invasive detection of cancer. BioQuick News recently sat down with Dhruvajyoti Roy (photo), PhD, who is the Director of Technology at the Laboratory for Advanced Medicine Inc. (LAM), an AI-driven healthcare company focused on commercializing early cancer detection tests from a simple blood draw, to learn about the company’s technology and recent advances in the field of DNA methylation analysis. LAM developed a blood-based Liver Cancer Test, which can be used for early detection of liver cancer, as well as for monitoring disease recurrence. Dr. Roy had presented data from a validation study conducted by LAM on the ability of the assay to detect hepatocellular carcinoma (HCC), the most common form of liver cancer (more than 75% of all liver cancers, at The Liver Meeting® 2019 hosted by the American Association for the Study of Liver Diseases (AASLD), which was held in Boston from November 8-12, 2019. AASLD selected LAM's data for its poster presentation as a "Poster of Distinction." Posters of Distinction are classified as being in the top 10% of scored poster abstracts. (Dr. Roy was interviewed by BioQuick News editor Michael D. O'Neill and the text of the interview is provided below). QUESTION: Why did your group decide to focus on methylation status of cfDNA for your test? DR. ROY: Both genetic and epigenetic changes are known to be associated with the development of tumors. Over the last decade, analysis of cell-free DNA (cfDNA) from liquid biopsy samples, has emerged as a promising and potentially transformative, non-invasive diagnostic approach in oncology. cfDNA is composed of fragmented DNA released by cells into the circulation, typically as a result of cell death.