Syndicate content

Archive - Jan 4, 2020

Date
  • All
  • Jan
  • Feb
  • Mar
  • Apr
  • May
  • Jun
  • Jul
  • Aug
  • Sep
  • Oct
  • Nov
  • Dec

Amazing Finding: Eye-Less Red Brittle Star Can See; Only Second Example in All of Biology of Animal Able to See Without Eyes; Deep Red Daylight Pigment of Color-Changing Brittle Star Is Key to Enabling Vision

Scientists have shown for the first time that brittle stars use vision to guide them through vibrant coral reefs, thanks to an unusual color-changing trick. The international team, led by researchers at Oxford University Museum of Natural History, described a new mechanism for vision in the red brittle star Ophiocoma wendtii, a relative to sea stars and sea urchins, which lives in the bright and complex reefs of the Caribbean Sea. The team’s findings were published online on January 2, 2020 in Current Biology. The open-access article is titled “Extraocular Vision in a Brittle Star Is Mediated by Chromatophore Movement in Response to Ambient Light.” This species first captured scientific attention more than 30 years ago thanks to its dramatic change in color between day and night and its strong aversion to light. Recently, researchers demonstrated that O. wendtii was covered in thousands of light-sensitive cells, but the exact behaviors these cells control remained a mystery. The new research shows that O. wendtii is able to see visual stimuli, and that its signature color-change might play an important role in enabling vision. Lauren Sumner-Rooney, PhD, a research fellow at Oxford University Museum of Natural History who studies unusual visual systems, has been working with Ophiocoma for several years at the Smithsonian Tropical Research Institute in Panama and the Museum für Naturkunde in Berlin. Alongside team members from the Museum für Naturkunde, Lund University (Sweden), and the Georgia Institute of Technology (USA), Dr. Sumner-Rooney ran hundreds of behavioral experiments to test the brittle stars' “eyesight.”

Researchers Identify Positions of All Atoms in Clostridium difficile’s Binary Toxin; Results May Serve As Starting Point for Effective Drug Design for Treatment of Often Deadly Bacterial Infection

An open-access article published online on January 2, 2020 in PNAS details a research breakthrough that provides a promising starting point for scientists to create drugs that may cure Clostridium difficile (C. diff) infection-- a virulent health care-associated infection that causes severe diarrhea, nausea, internal bleeding, and potentially death. The article is titled “Structure of the Cell-Binding Component of the Clostridium Difficile Binary Toxin Reveals a Di-Heptamer Macromolecular Assembly.” The C. diff bacteria affects roughly half-a-million Americans and causes nearly 15,000 deaths in the U.S. annually, and results in over $5 billion in health-care-related costs each year in this country. Overuse of antibiotics has increasingly put patients in heath care facilities at risk for acquiring C. diff and made some strains of the bacteria particularly hard to treat. But newly discovered information about a type of toxin released by the most dangerous strains of C. diff is providing researchers with a map for developing drugs that can block the toxin and prevent the bacteria from entering human cells. "The most dangerous strains of C. diff release a binary toxin (image) that first binds to cells and then creates a pore-forming channel that allows the toxin to get inside and do harm," said Amedee de Georges, PhD, the study's principal investigator and a professor with the Advanced Science Research Center at The Graduate Center, CUNY's Structural Biology Iniative. "We were able to combine several increasingly popular biophysical imaging techniques to visualize and characterize every atom of this binary toxin and show us where they are positioned. These details provide a critical and extremely useful starting point for designing drugs that can prevent C.

Water Lily Genome Expands Picture of the Early Evolution of Flowering Plants

The newly reported genome sequence of a water lily sheds light on the early evolution of angiosperms, the group of all flowering plants. An international team of researchers, including scientists at Penn State, used high-throughput next-generation sequencing technology to read out the water lily's (Nymphaea colorata) genome and transcriptome (the set of all genes expressed as messenger RNAs). The unusual high quality and depth of coverage of the sequence allowed the researchers to assemble the vast majority of the genome into 14 chromosomes and identify more than 31,000 protein-coding genes. An open-access paper describing the sequence and subsequent analysis was published online on December 18, 2019 in the journal Nature. "Water lilies have been an inspiration to artists like Claude Monet because of their beauty and important to scientists because of their position near the base of the evolutionary tree of all flowering plants," said Hong Ma, PfD, Associate Dean for Research and Innovation, Huck Distinguished Research Professor of Plant Molecular Biology, and Professor of Biology at Penn State, one of the leaders of the research team. "I previously contributed to the sequencing and analysis of the genome of Amborella, which represents the earliest branch to separate from other flowering plants, but Amborella lacks big showy colorful flowers and attractive floral scent, both of which serve to attract pollinators in most groups of flowering plants.

New Photodynamic Therapy Based on Photosensitizers (Photosens and Photodithazine) Induces Immunogenic Cell Death in Mouse Tumor Cells

The world scientific community is waging a difficult and prolonged war on cancer. New research in the field of immunogenic cell death can extend the area of drugs application and ensure patients' protection from relapse after therapy. Cancer treatment is not just the removal of the tumor cells from the body, and chemotherapy. The doctors' aim is to provide a scenario that would prevent tumor cells from proliferating and causing a new disease. For many years, scientists at the Lobachevsky State University of Nizhny Novgorod and the University of Ghent (Belgium) have been engaged in research aimed to minimize the harm to the body after cancer treatment and have been looking for new approaches to treating cancer patients. The project, supported by a grant from the Russian Science Foundation and headed by Dmitry Krys'ko, PhD, leading researcher of the Lobachevsky University's Institute of Biology and Biomedicine, Professor at Ghent University, has yielded its first major results. According to Professor Krys'ko, the existing anti-cancer therapy (chemotherapy, radiation therapy and photodynamic therapy) causes great damage to the body as a whole, while his team's research is aimed at the stimulation of immunogenic cell death, which not only minimizes the damage, but also enhances the efficacy of treatment by involving the body's resources in the fight against cancer. "In this study, we tested some drugs for anticancer therapy based on photodynamic treatment and investigated their new immunogenic properties. We can say that not only the external impact will be used to fight cancer, but also the body itself will engage in the fight by triggering the reactions of the adaptive immune response.